Source code for phasorpy.component

"""Component analysis of phasor coordinates.

The ``phasorpy.component`` module provides functions to:

- calculate fractions of two known components by projecting onto the
  line between the components (:py:func:`phasor_component_fraction`)

- calculate phasor coordinates of second component if only one is
  known (not implemented)

- calculate fractions of multiple known components by using higher
  harmonic information (:py:func:`phasor_component_fit`)

- calculate fractions of two or three known components by resolving
  graphically with histogram (:py:func:`phasor_component_graphical`)

- calculate mean value coordinates of phasor coordinates with respect
  to three or more components (:py:func:`phasor_component_mvc`)

- blindly resolve fractions of multiple components by using harmonic
  information (:py:func:`phasor_component_blind`, not implemented)

- calculate phasor coordinates from fractional intensities of
  components (:py:func:`phasor_from_component`)

"""

from __future__ import annotations

__all__ = [
    # phasor_component_blind,
    'phasor_component_fit',
    'phasor_component_fraction',
    'phasor_component_graphical',
    'phasor_component_mvc',
    'phasor_from_component',
]

import numbers
from typing import TYPE_CHECKING

if TYPE_CHECKING:
    from ._typing import Any, ArrayLike, DTypeLike, NDArray

import numpy

from ._phasorpy import (
    _blend_and,
    _fraction_on_segment,
    _is_inside_circle,
    _is_inside_stadium,
    _mean_value_coordinates,
    _segment_direction_and_length,
)
from ._utils import sort_coordinates
from .phasor import phasor_threshold
from .utils import number_threads


[docs] def phasor_from_component( component_real: ArrayLike, component_imag: ArrayLike, fraction: ArrayLike, /, axis: int = 0, dtype: DTypeLike | None = None, ) -> tuple[NDArray[Any], NDArray[Any]]: """Return phasor coordinates from fractional intensities of components. Return the dot products of the fractional intensities of components with the real and imaginary phasor coordinates of the components. Multi-dimensional component arrays are currently not supported. Parameters ---------- component_real : array_like, shape (n,) Real coordinates of components. At least two components are required. component_imag : array_like, shape (n,) Imaginary coordinates of components. fraction : array_like Fractional intensities of components. Fractions are normalized to sum to one along `axis`. axis : int, optional, default: 0 Axis of components in `fraction`. dtype : dtype_like, optional Floating point data type used for calculation and output values. Either `float32` or `float64`. The default is `float64`. Returns ------- real : ndarray Real component of phasor coordinates. imag : ndarray Imaginary component of phasor coordinates. Examples -------- Calculate phasor coordinates from two components and their fractional intensities: >>> phasor_from_component( ... [0.6, 0.4], [0.3, 0.2], [[1.0, 0.2, 0.9], [0.0, 0.8, 0.1]] ... ) (array([0.6, 0.44, 0.58]), array([0.3, 0.22, 0.29])) """ dtype = numpy.dtype(dtype) if dtype.char not in {'f', 'd'}: raise ValueError(f'{dtype=} is not a floating point type') fraction = numpy.array(fraction, dtype=dtype, copy=True) if fraction.ndim < 1: raise ValueError(f'{fraction.ndim=} < 1') if fraction.shape[axis] < 2: raise ValueError(f'{fraction.shape[axis]=} < 2') with numpy.errstate(divide='ignore', invalid='ignore'): fraction /= fraction.sum(axis=axis, keepdims=True) component_real = numpy.asarray(component_real, dtype=dtype) component_imag = numpy.asarray(component_imag, dtype=dtype) if component_real.shape != component_imag.shape: raise ValueError(f'{component_real.shape=} != {component_imag.shape=}') if component_real.ndim != 1: raise ValueError(f'{component_real.ndim=} != 1') if component_real.size != fraction.shape[axis]: raise ValueError(f'{component_real.size=} != {fraction.shape[axis]=}') fraction = numpy.moveaxis(fraction, axis, -1) real = numpy.dot(fraction, component_real) imag = numpy.dot(fraction, component_imag) return real, imag
[docs] def phasor_component_fraction( real: ArrayLike, imag: ArrayLike, component_real: ArrayLike, component_imag: ArrayLike, /, ) -> NDArray[Any]: """Return fraction of first of two components from phasor coordinates. Return the relative distance (normalized by the distance between the two components) to the second component for each phasor coordinate projected onto the line between two components. Parameters ---------- real : array_like Real component of phasor coordinates. imag : array_like Imaginary component of phasor coordinates. component_real : array_like, shape (2,) Real coordinates of first and second components. component_imag : array_like, shape (2,) Imaginary coordinates of first and second components. Returns ------- fraction : ndarray Fractions of first component. Raises ------ ValueError If the real or imaginary coordinates of the known components are not of size 2. See Also -------- :ref:`sphx_glr_tutorials_api_phasorpy_component.py` Notes ----- The fraction of the second component is ``1.0 - fraction``. For now, calculation of fraction of components from different channels or frequencies is not supported. Only one pair of components can be analyzed and will be broadcast to all channels/frequencies. Examples -------- >>> phasor_component_fraction( ... [0.6, 0.5, 0.4], [0.4, 0.3, 0.2], [0.2, 0.9], [0.4, 0.3] ... ) array([0.44, 0.56, 0.68]) """ component_real = numpy.asarray(component_real) component_imag = numpy.asarray(component_imag) if component_real.shape != (2,): raise ValueError(f'{component_real.shape=} != (2,)') if component_imag.shape != (2,): raise ValueError(f'{component_imag.shape=} != (2,)') if ( component_real[0] == component_real[1] and component_imag[0] == component_imag[1] ): raise ValueError('components must have different coordinates') return _fraction_on_segment( # type: ignore[no-any-return] real, imag, component_real[0], component_imag[0], component_real[1], component_imag[1], )
[docs] def phasor_component_graphical( real: ArrayLike, imag: ArrayLike, component_real: ArrayLike, component_imag: ArrayLike, /, *, radius: float = 0.05, fractions: ArrayLike | None = None, ) -> NDArray[Any]: r"""Return fractions of two or three components from phasor coordinates. The graphical method is based on moving circular cursors along the line between pairs of components and quantifying the phasors for each fraction. Parameters ---------- real : array_like Real component of phasor coordinates. imag : array_like Imaginary component of phasor coordinates. component_real : array_like, shape (2,) or (3,) Real coordinates for two or three components. component_imag : array_like, shape (2,) or (3,) Imaginary coordinates for two or three components. radius : float, optional, default: 0.05 Radius of cursor. fractions : array_like or int, optional Number of equidistant fractions, or 1D array of fraction values. Fraction values must be in range [0.0, 1.0]. If an integer, ``numpy.linspace(0.0, 1.0, fractions)`` fraction values are used. If None (default), the number of fractions is determined from the longest distance between any pair of components and the radius of the cursor (see Notes below). Returns ------- counts : ndarray Counts along each line segment connecting components. Ordered 0-1 (2 components) or 0-1, 0-2, 1-2 (3 components). Shaped `(number fractions,)` (2 components) or `(3, number fractions)` (3 components). Raises ------ ValueError The array shapes of `real` and `imag`, or `component_real` and `component_imag` do not match. The number of components is not 2 or 3. Fraction values are out of range [0.0, 1.0]. See Also -------- :ref:`sphx_glr_tutorials_api_phasorpy_component.py` Notes ----- For now, calculation of fraction of components from different channels or frequencies is not supported. Only one set of components can be analyzed and will be broadcast to all channels/frequencies. The graphical method was first introduced in [1]_. If no `fractions` are provided, the number of fractions (:math:`N`) used is determined from the longest distance between any pair of components (:math:`D`) and the radius of the cursor (:math:`R`): .. math:: N = \frac{2 \cdot D}{R} + 1 The fractions can be retrieved by: .. code-block:: python fractions = numpy.linspace(0.0, 1.0, len(counts[0])) References ---------- .. [1] Ranjit S, Datta R, Dvornikov A, and Gratton E. `Multicomponent analysis of phasor plot in a single pixel to calculate changes of metabolic trajectory in biological systems <https://doi.org/10.1021/acs.jpca.9b07880>`_. *J Phys Chem A*, 123(45): 9865-9873 (2019) Examples -------- Count the number of phasors between two components: >>> phasor_component_graphical( ... [0.6, 0.3], [0.35, 0.38], [0.2, 0.9], [0.4, 0.3], fractions=6 ... ) array([0, 0, 1, 0, 1, 0], dtype=uint8) Count the number of phasors between the combinations of three components: >>> phasor_component_graphical( ... [0.4, 0.5], ... [0.2, 0.3], ... [0.0, 0.2, 0.9], ... [0.0, 0.4, 0.3], ... fractions=6, ... ) array([[0, 1, 1, 1, 1, 0], [0, 1, 0, 0, 0, 0], [0, 1, 2, 0, 0, 0]], dtype=uint8) """ real = numpy.asarray(real) imag = numpy.asarray(imag) component_real = numpy.asarray(component_real) component_imag = numpy.asarray(component_imag) if ( real.shape != imag.shape or component_real.shape != component_imag.shape ): raise ValueError('input array shapes must match') if component_real.ndim != 1: raise ValueError( 'component arrays are not one-dimensional: ' f'{component_real.ndim} dimensions found' ) num_components = len(component_real) if num_components not in {2, 3}: raise ValueError('number of components must be 2 or 3') if fractions is None: longest_distance = 0 for i in range(num_components): a_real = component_real[i] a_imag = component_imag[i] for j in range(i + 1, num_components): b_real = component_real[j] b_imag = component_imag[j] _, _, length = _segment_direction_and_length( a_real, a_imag, b_real, b_imag ) longest_distance = max(longest_distance, length) fractions = numpy.linspace( 0.0, 1.0, int(round(longest_distance / (radius / 2) + 1)) ) elif isinstance(fractions, (int, numbers.Integral)): fractions = numpy.linspace(0.0, 1.0, fractions) else: fractions = numpy.asarray(fractions) if fractions.ndim != 1: raise ValueError('fractions is not a one-dimensional array') dtype = numpy.min_scalar_type(real.size) counts = numpy.empty( (1 if num_components == 2 else 3, fractions.size), dtype ) c = 0 for i in range(num_components): a_real = component_real[i] a_imag = component_imag[i] for j in range(i + 1, num_components): b_real = component_real[j] b_imag = component_imag[j] ab_real = a_real - b_real ab_imag = a_imag - b_imag for k, f in enumerate(fractions): if f < 0.0 or f > 1.0: raise ValueError(f'fraction {f} out of bounds [0.0, 1.0]') if num_components == 2: mask = _is_inside_circle( real, imag, b_real + f * ab_real, # cursor_real b_imag + f * ab_imag, # cursor_imag radius, ) else: # num_components == 3 mask = _is_inside_stadium( real, imag, b_real + f * ab_real, # cursor_real b_imag + f * ab_imag, # cursor_imag component_real[3 - i - j], # c_real component_imag[3 - i - j], # c_imag radius, ) counts[c, k] = numpy.sum(mask, dtype=dtype) c += 1 return counts[0] if num_components == 2 else counts
[docs] def phasor_component_fit( mean: ArrayLike, real: ArrayLike, imag: ArrayLike, component_real: ArrayLike, component_imag: ArrayLike, /, **kwargs: Any, ) -> NDArray[Any]: """Return fractions of multiple components from phasor coordinates. Component fractions are obtained from the least-squares solution of a linear matrix equation that relates phasor coordinates from one or multiple harmonics to component fractions according to [2]_. Up to ``2 * number harmonics + 1`` components can be fit to multi-harmonic phasor coordinates, that is up to three components for single harmonic phasor coordinates. Parameters ---------- mean : array_like Intensity of phasor coordinates. real : array_like Real component of phasor coordinates. Harmonics, if any, must be in the first dimension. imag : array_like Imaginary component of phasor coordinates. Harmonics, if any, must be in the first dimension. component_real : array_like Real coordinates of components. Must be one or two-dimensional with harmonics in the first dimension. component_imag : array_like Imaginary coordinates of components. Must be one or two-dimensional with harmonics in the first dimension. **kwargs : optional Additional arguments passed to :py:func:`scipy.linalg.lstsq()`. Returns ------- fractions : ndarray Component fractions. Fractions may not exactly add up to 1.0. Raises ------ ValueError The array shapes of `real` and `imag` do not match. The array shapes of `component_real` and `component_imag` do not match. The number of harmonics in the components does not match the ones in the phasor coordinates. The system is underdetermined; the component matrix having more columns than rows. See Also -------- :ref:`sphx_glr_tutorials_api_phasorpy_component.py` :ref:`sphx_glr_tutorials_applications_phasorpy_component_fit.py` Notes ----- For now, calculation of fractions of components from different channels or frequencies is not supported. Only one set of components can be analyzed and is broadcast to all channels/frequencies. The method builds a linear matrix equation, :math:`A\\mathbf{x} = \\mathbf{b}`, where :math:`A` consists of the phasor coordinates of individual components, :math:`\\mathbf{x}` are the unknown fractions, and :math:`\\mathbf{b}` represents the measured phasor coordinates in the mixture. The least-squares solution of this linear matrix equation yields the fractions. References ---------- .. [2] Vallmitjana A, Lepanto P, Irigoin F, and Malacrida L. `Phasor-based multi-harmonic unmixing for in-vivo hyperspectral imaging <https://doi.org/10.1088/2050-6120/ac9ae9>`_. *Methods Appl Fluoresc*, 11(1): 014001 (2022) Examples -------- >>> phasor_component_fit( ... [1, 1, 1], [0.6, 0.5, 0.4], [0.4, 0.3, 0.2], [0.2, 0.9], [0.4, 0.3] ... ) array([[0.4644, 0.5356, 0.6068], [0.5559, 0.4441, 0.3322]]) """ from scipy.linalg import lstsq mean = numpy.atleast_1d(mean) real = numpy.atleast_1d(real) imag = numpy.atleast_1d(imag) component_real = numpy.atleast_1d(component_real) component_imag = numpy.atleast_1d(component_imag) if real.shape != imag.shape: raise ValueError(f'{real.shape=} != {imag.shape=}') if mean.shape != real.shape[-mean.ndim :]: raise ValueError(f'{mean.shape=} does not match {real.shape=}') if component_real.shape != component_imag.shape: raise ValueError(f'{component_real.shape=} != {component_imag.shape=}') if numpy.isnan(component_real).any() or numpy.isnan(component_imag).any(): raise ValueError( 'component phasor coordinates must not contain NaN values' ) if numpy.isinf(component_real).any() or numpy.isinf(component_imag).any(): raise ValueError( 'component phasor coordinates must not contain infinite values' ) if component_real.ndim == 1: component_real = component_real.reshape(1, -1) component_imag = component_imag.reshape(1, -1) elif component_real.ndim > 2: raise ValueError(f'{component_real.ndim=} > 2') num_harmonics, num_components = component_real.shape # create component matrix for least squares solving: # [real coordinates of components (for each harmonic)] + # [imaginary coordinates of components (for each harmonic)] + # [ones for intensity constraint] component_matrix = numpy.ones((2 * num_harmonics + 1, num_components)) component_matrix[:num_harmonics] = component_real component_matrix[num_harmonics : 2 * num_harmonics] = component_imag if component_matrix.shape[0] < component_matrix.shape[1]: raise ValueError( 'the system is undetermined ' f'({num_components=} > {num_harmonics * 2 + 1=})' ) has_harmonic_axis = mean.ndim + 1 == real.ndim if not has_harmonic_axis: real = numpy.expand_dims(real, axis=0) imag = numpy.expand_dims(imag, axis=0) elif real.shape[0] != num_harmonics: raise ValueError(f'{real.shape[0]=} != {component_real.shape[0]=}') # TODO: replace Inf with NaN values? mean, real, imag = phasor_threshold(mean, real, imag) # replace NaN values with 0.0 for least squares solving real = numpy.nan_to_num(real, nan=0.0, copy=False) imag = numpy.nan_to_num(imag, nan=0.0, copy=False) # create coordinates matrix for least squares solving: # [real coordinates (for each harmonic)] + # [imaginary coordinates (for each harmonic)] + # [ones for intensity constraint] coords = numpy.ones( (2 * num_harmonics + 1,) + real.shape[1:] # type: ignore[union-attr] ) coords[:num_harmonics] = real coords[num_harmonics : 2 * num_harmonics] = imag fractions = lstsq( component_matrix, coords.reshape(coords.shape[0], -1), **kwargs )[0] # reshape to match input dimensions fractions = fractions.reshape((num_components,) + coords.shape[1:]) # TODO: normalize fractions to sum up to 1.0? # fractions /= numpy.sum(fractions, axis=0, keepdims=True) # restore NaN values in fractions from mean _blend_and(mean, fractions, out=fractions) return numpy.asarray(fractions)
[docs] def phasor_component_mvc( real: ArrayLike, imag: ArrayLike, component_real: ArrayLike, component_imag: ArrayLike, /, *, dtype: DTypeLike = None, num_threads: int | None = None, ) -> NDArray[Any]: """Return mean value coordinates of phasor coordinates from components. The mean value coordinates of phasor coordinates with respect to three or more components spanning an arbitrary simple polygon are computed using the stable method described in [3]_. For three components, mean value coordinates are equivalent to barycentric coordinates. Parameters ---------- real : array_like Real component of phasor coordinates. imag : array_like Imaginary component of phasor coordinates. component_real : array_like Real coordinates of at least three components. component_imag : array_like Imaginary coordinates of at least three components. dtype : dtype_like, optional Floating point data type used for calculation and output values. Either `float32` or `float64`. The default is `float64`. num_threads : int, optional Number of OpenMP threads to use for parallelization. By default, multi-threading is disabled. If zero, up to half of logical CPUs are used. OpenMP may not be available on all platforms. Returns ------- fractions : ndarray Mean value coordinates for each phasor coordinate. Raises ------ ValueError The array shapes of `real` and `imag` do not match. The array shapes of `component_real` and `component_imag` do not match. Notes ----- Calculation of mean value coordinates for different channels, frequencies, or harmonics is not supported. Only one set of components can be analyzed and is broadcast to all channels/frequencies/harmonics. For three components, this function returns the same result as :py:func:`phasor_component_fit`. For more than three components, the system is underdetermined and the mean value coordinates represent one of multiple solutions. However, the special properties of the mean value coordinates make them particularly useful for interpolating and visualizing multi-component data. References ---------- .. [3] Fuda C and Hormann K. `A new stable method to compute mean value coordinates <https://doi.org/10.1016/j.cagd.2024.102310>`_. *Computer Aided Geometric Design*, 111: 102310 (2024) Examples -------- Calculate the barycentric coordinates of a phasor coordinate in a triangle defined by three components: >>> phasor_component_mvc(0.6, 0.3, [0.0, 1.0, 0.0], [1.0, 0.0, 0.0]) array([0.3, 0.6, 0.1]) The barycentric coordinates of phasor coordinates outside the polygon defined by the components may be outside the range [0.0, 1.0]: >>> phasor_component_mvc(0.6, 0.6, [0.0, 1.0, 0.0], [1.0, 0.0, 0.0]) array([0.6, 0.6, -0.2]) """ num_threads = number_threads(num_threads) dtype = numpy.dtype(dtype) if dtype.char not in {'f', 'd'}: raise ValueError(f'{dtype=} is not a floating point type') real = numpy.ascontiguousarray(real, dtype=dtype) imag = numpy.ascontiguousarray(imag, dtype=dtype) component_real = numpy.ascontiguousarray(component_real, dtype=dtype) component_imag = numpy.ascontiguousarray(component_imag, dtype=dtype) if real.shape != imag.shape: raise ValueError(f'{real.shape=} != {imag.shape=}') if component_real.shape != component_imag.shape: raise ValueError(f'{component_real.shape=} != {component_imag.shape=}') if component_real.ndim != 1 or component_real.size < 3: raise ValueError('number of components must be three or more') if numpy.isnan(component_real).any() or numpy.isnan(component_imag).any(): raise ValueError('component coordinates must not contain NaN values') if numpy.isinf(component_real).any() or numpy.isinf(component_imag).any(): raise ValueError( 'component coordinates must not contain infinite values' ) # TODO:: sorting not strictly required for three components? component_real, component_imag, indices = sort_coordinates( component_real, component_imag ) shape = real.shape real = real.reshape(-1) imag = imag.reshape(-1) fraction = numpy.zeros((component_real.size, real.size), dtype=dtype) _mean_value_coordinates( fraction, indices, real, imag, component_real, component_imag, num_threads, ) return numpy.asarray(fraction.reshape((-1, *shape)).squeeze())