Source code for phasorpy.cursor

"""Select regions of interest (cursors) from phasor coordinates.

The ``phasorpy.cursor`` module provides functions to:

- create masks for regions of interest in the phasor space:

  - :py:func:`mask_from_circular_cursor`
  - :py:func:`mask_from_elliptic_cursor`
  - :py:func:`mask_from_polar_cursor`

- create pseudo-color image from average signal and cursor masks:

  - :py:func:`pseudo_color`

"""

from __future__ import annotations

__all__ = [
    'mask_from_circular_cursor',
    'mask_from_elliptic_cursor',
    'mask_from_polar_cursor',
    'pseudo_color',
]

from typing import TYPE_CHECKING

if TYPE_CHECKING:
    from ._typing import ArrayLike, Literal, NDArray

import numpy

from phasorpy.color import CATEGORICAL

from ._phasorpy import (
    _blend_normal,
    _blend_overlay,
    _is_inside_circle,
    _is_inside_ellipse_,
    _is_inside_polar_rectangle,
)


[docs] def mask_from_circular_cursor( real: ArrayLike, imag: ArrayLike, center_real: ArrayLike, center_imag: ArrayLike, /, *, radius: ArrayLike = 0.05, ) -> NDArray[numpy.bool_]: """Return masks for circular cursors of phasor coordinates. Parameters ---------- real : array_like Real component of phasor coordinates. imag : array_like Imaginary component of phasor coordinates. center_real : array_like, shape (n,) Real coordinates of circle centers. center_imag : array_like, shape (n,) Imaginary coordinates of circle centers. radius : array_like, optional, shape (n,) Radii of circles. Returns ------- masks : ndarray Boolean array of shape `(n, *real.shape)`. The first dimension is omitted if `center_*` and `radius` are scalars. Values are True if phasor coordinates are inside circular cursor, else False. Raises ------ ValueError The array shapes of `real` and `imag` do not match. The array shapes of `center_real`, `center_imag`, or `radius` have more than one dimension. See Also -------- :ref:`sphx_glr_tutorials_api_phasorpy_cursor.py` Examples -------- Create mask for a single circular cursor: >>> mask_from_circular_cursor([0.2, 0.5], [0.4, 0.5], 0.2, 0.4, radius=0.1) array([ True, False]) Create masks for two circular cursors with different radius: >>> mask_from_circular_cursor( ... [0.2, 0.5], [0.4, 0.5], [0.2, 0.5], [0.4, 0.5], radius=[0.1, 0.05] ... ) array([[ True, False], [False, True]]) """ real = numpy.asarray(real) imag = numpy.asarray(imag) center_real = numpy.asarray(center_real) center_imag = numpy.asarray(center_imag) radius = numpy.asarray(radius) if real.shape != imag.shape: raise ValueError(f'{real.shape=} != {imag.shape=}') if center_real.ndim > 1 or center_imag.ndim > 1 or radius.ndim > 1: raise ValueError( f'{center_real.ndim=}, {center_imag.ndim=}, or {radius.ndim=} > 1' ) moveaxis = False if real.ndim > 0 and ( center_real.ndim > 0 or center_imag.ndim > 0 or radius.ndim > 0 ): moveaxis = True real = numpy.expand_dims(real, axis=-1) imag = numpy.expand_dims(imag, axis=-1) mask = _is_inside_circle(real, imag, center_real, center_imag, radius) if moveaxis: mask = numpy.moveaxis(mask, -1, 0) return mask.astype(numpy.bool_) # type: ignore[no-any-return]
[docs] def mask_from_elliptic_cursor( real: ArrayLike, imag: ArrayLike, center_real: ArrayLike, center_imag: ArrayLike, /, *, radius: ArrayLike = 0.05, radius_minor: ArrayLike | None = None, angle: ArrayLike | Literal['phase', 'semicircle'] | str | None = None, ) -> NDArray[numpy.bool_]: """Return masks for elliptic cursors of phasor coordinates. Parameters ---------- real : array_like Real component of phasor coordinates. imag : array_like Imaginary component of phasor coordinates. center_real : array_like, shape (n,) Real coordinates of ellipses centers. center_imag : array_like, shape (n,) Imaginary coordinates of ellipses centers. radius : array_like, optional, shape (n,) Radii of ellipses along semi-major axis. radius_minor : array_like, optional, shape (n,) Radii of ellipses along semi-minor axis. By default, the ellipses are circular. angle : array_like or {'phase', 'semicircle'}, optional Rotation angle of semi-major axis of elliptic cursors in radians. If None or 'phase', align the minor axes of the ellipses with the closest tangent on the unit circle. If 'semicircle', align the ellipses with the universal semicircle. Returns ------- masks : ndarray Boolean array of shape `(n, *real.shape)`. The first dimension is omitted if `center_real`, `center_imag`, `radius`, `radius_minor`, and `angle` are scalars. Values are True if phasor coordinates are inside elliptic cursor, else False. Raises ------ ValueError The array shapes of `real` and `imag` do not match. The array shapes of `center_real`, `center_imag`, `radius`, `radius_minor`, or `angle` have more than one dimension. See Also -------- :ref:`sphx_glr_tutorials_api_phasorpy_cursor.py` Examples -------- Create mask for a single elliptic cursor: >>> mask_from_elliptic_cursor([0.2, 0.5], [0.4, 0.5], 0.2, 0.4, radius=0.1) array([ True, False]) Create masks for two elliptic cursors with different radii: >>> mask_from_elliptic_cursor( ... [0.2, 0.5], ... [0.4, 0.5], ... [0.2, 0.5], ... [0.4, 0.5], ... radius=[0.1, 0.05], ... radius_minor=[0.15, 0.1], ... angle=[math.pi, math.pi / 2], ... ) array([[ True, False], [False, True]]) """ real = numpy.asarray(real) imag = numpy.asarray(imag) center_real = numpy.asarray(center_real) center_imag = numpy.asarray(center_imag) radius_a = numpy.asarray(radius) if radius_minor is None: radius_b = radius_a # circular by default angle = 0.0 else: radius_b = numpy.asarray(radius_minor) if angle is None: angle = numpy.arctan2(center_imag, center_real) elif isinstance(angle, str): # TODO: vectorize str type if angle == 'phase': angle = numpy.arctan2(center_imag, center_real) elif angle == 'semicircle': angle = numpy.arctan2(center_imag, center_real - 0.5) else: raise ValueError(f'invalid {angle=}') angle_sin = numpy.sin(angle) angle_cos = numpy.cos(angle) if real.shape != imag.shape: raise ValueError(f'{real.shape=} != {imag.shape=}') if ( center_real.ndim > 1 or center_imag.ndim > 1 or radius_a.ndim > 1 or radius_b.ndim > 1 or angle_sin.ndim > 1 ): raise ValueError( f'{center_real.ndim=}, {center_imag.ndim=}, ' f'radius.ndim={radius_a.ndim}, ' f'radius_minor.ndim={radius_b.ndim}, or ' f'angle.ndim={angle_sin.ndim}, > 1' ) moveaxis = False if real.ndim > 0 and ( center_real.ndim > 0 or center_imag.ndim > 0 or radius_a.ndim > 0 or radius_b.ndim > 0 or angle_sin.ndim > 0 ): moveaxis = True real = numpy.expand_dims(real, axis=-1) imag = numpy.expand_dims(imag, axis=-1) mask = _is_inside_ellipse_( real, imag, center_real, center_imag, radius_a, radius_b, angle_sin, angle_cos, ) if moveaxis: mask = numpy.moveaxis(mask, -1, 0) return mask.astype(numpy.bool_) # type: ignore[no-any-return]
[docs] def mask_from_polar_cursor( real: ArrayLike, imag: ArrayLike, phase_min: ArrayLike, phase_max: ArrayLike, modulation_min: ArrayLike, modulation_max: ArrayLike, /, ) -> NDArray[numpy.bool_]: """Return mask for polar cursor of polar coordinates. Parameters ---------- real : array_like Real component of phasor coordinates. imag : array_like Imaginary component of phasor coordinates. phase_min : array_like, shape (n,) Lower bound of angular range of cursors in radians. Values should be in range [-pi, pi]. phase_max : array_like, shape (n,) Upper bound of angular range of cursors in radians. Values should be in range [-pi, pi]. modulation_min : array_like, shape (n,) Lower bound of radial range of cursors. modulation_max : array_like, shape (n,) Upper bound of radial range of cursors. Returns ------- masks : ndarray Boolean array of shape `(n, *real.shape)`. The first dimension is omitted if `phase_*` and `modulation_*` are scalars. Values are True if phasor coordinates are inside polar range cursor, else False. Raises ------ ValueError The array shapes of `phase` and `modulation`, or `phase_range` and `modulation_range` do not match. The array shapes of `phase_*` or `modulation_*` have more than one dimension. See Also -------- :ref:`sphx_glr_tutorials_api_phasorpy_cursor.py` Examples -------- Create mask from a single polar cursor: >>> mask_from_polar_cursor([0.2, 0.5], [0.4, 0.5], 1.1, 1.2, 0.4, 0.5) array([ True, False]) Create masks for two polar cursors with different ranges: >>> mask_from_polar_cursor( ... [0.2, 0.5], ... [0.4, 0.5], ... [1.1, 0.7], ... [1.2, 0.8], ... [0.4, 0.7], ... [0.5, 0.8], ... ) array([[ True, False], [False, True]]) """ real = numpy.asarray(real) imag = numpy.asarray(imag) phase_min = numpy.asarray(phase_min) phase_max = numpy.asarray(phase_max) modulation_min = numpy.asarray(modulation_min) modulation_max = numpy.asarray(modulation_max) if real.shape != imag.shape: raise ValueError(f'{real.shape=} != {imag.shape=}') if ( phase_min.ndim > 1 or phase_max.ndim > 1 or modulation_min.ndim > 1 or modulation_max.ndim > 1 ): raise ValueError( f'{phase_min.ndim=}, {phase_max.ndim=}, ' f'{modulation_min.ndim=}, or {modulation_max.ndim=} > 1' ) # TODO: check if angles are in range [-pi and pi] moveaxis = False if real.ndim > 0 and ( phase_min.ndim > 0 or phase_max.ndim > 0 or modulation_min.ndim > 0 or modulation_max.ndim > 0 ): moveaxis = True real = numpy.expand_dims(real, axis=-1) imag = numpy.expand_dims(imag, axis=-1) mask = _is_inside_polar_rectangle( real, imag, phase_min, phase_max, modulation_min, modulation_max ) if moveaxis: mask = numpy.moveaxis(mask, -1, 0) return mask.astype(numpy.bool_) # type: ignore[no-any-return]
[docs] def pseudo_color( *masks: ArrayLike, intensity: ArrayLike | None = None, colors: ArrayLike | None = None, vmin: float | None = 0.0, vmax: float | None = None, ) -> NDArray[numpy.float32]: """Return pseudo-colored image from cursor masks. Parameters ---------- *masks : array_like Boolean mask for each cursor. intensity : array_like, optional Intensity used as base layer to blend cursor colors in "overlay" mode. If None, cursor masks are blended using "screen" mode. vmin : float, optional Minimum value to normalize `intensity`. If None, the minimum value of `intensity` is used. vmax : float, optional Maximum value to normalize `intensity`. If None, the maximum value of `intensity` is used. colors : array_like, optional, shape (N, 3) RGB colors assigned to each cursor. The last dimension contains the normalized RGB floating point values. The default is :py:data:`phasorpy.color.CATEGORICAL`. Returns ------- ndarray Pseudo-colored image of shape ``(*masks[0].shape, 3)``. Raises ------ ValueError `colors` is not a (n, 3) shaped floating point array. The shapes of `masks` or `mean` cannot broadcast. See Also -------- :ref:`sphx_glr_tutorials_api_phasorpy_cursor.py` Examples -------- Create pseudo-color image from single mask: >>> pseudo_color([True, False, True]) # doctest: +NUMBER array([[0.8254, 0.09524, 0.127], [0, 0, 0], [0.8254, 0.09524, 0.127]]...) Create pseudo-color image from two masks and intensity image: >>> pseudo_color( ... [True, False], [False, True], intensity=[0.4, 0.6], vmax=1.0 ... ) # doctest: +NUMBER array([[0.6603, 0.07619, 0.1016], [0.2762, 0.5302, 1]]...) """ if len(masks) == 0: raise TypeError( "pseudo_color() missing 1 required positional argument: 'masks'" ) if colors is None: colors = CATEGORICAL else: colors = numpy.asarray(colors) if colors.ndim != 2: raise ValueError(f'{colors.ndim=} != 2') if colors.shape[-1] != 3: raise ValueError(f'{colors.shape[-1]=} != 3') if colors.dtype.kind != 'f': raise ValueError('colors is not a floating point array') # TODO: add support for matplotlib colors shape = numpy.asarray(masks[0]).shape if intensity is not None: # normalize intensity to range [0, 1] intensity = numpy.array( intensity, dtype=numpy.float32, ndmin=1, copy=True ) if intensity.size > 1: if vmin is None: vmin = numpy.nanmin(intensity) if vmax is None: vmax = numpy.nanmax(intensity) if vmin != 0.0: intensity -= vmin scale = vmax - vmin if scale != 0.0 and scale != 1.0: intensity /= scale numpy.clip(intensity, 0.0, 1.0, out=intensity) if intensity.shape == shape: intensity = intensity[..., numpy.newaxis] pseudocolor = numpy.full((*shape, 3), intensity, dtype=numpy.float32) else: pseudocolor = numpy.zeros((*shape, 3), dtype=numpy.float32) # TODO: support intensity or RGB input in addition to masks blend = numpy.empty_like(pseudocolor) for i, mask_ in enumerate(masks): mask = numpy.asarray(mask_) if mask.shape != shape: raise ValueError(f'masks[{i}].shape={mask.shape} != {shape}') blend.fill(numpy.nan) blend[mask] = colors[i] if intensity is None: # TODO: replace by _blend_screen? _blend_normal(pseudocolor, blend, out=pseudocolor) else: _blend_overlay(pseudocolor, blend, out=pseudocolor) pseudocolor.clip(0.0, 1.0, out=pseudocolor) return pseudocolor