"""PhasorPlot class."""
from __future__ import annotations
__all__ = ['PhasorPlot']
import math
import os
from collections.abc import Sequence
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from .._typing import Any, ArrayLike, Literal, NDArray, IO
from matplotlib.axes import Axes
from matplotlib.figure import Figure
import numpy
from matplotlib import pyplot
from matplotlib.font_manager import FontProperties
from matplotlib.legend import Legend
from matplotlib.lines import Line2D
from matplotlib.patches import (
Arc,
Circle,
Ellipse,
FancyArrowPatch,
Polygon,
Rectangle,
)
from matplotlib.path import Path
from matplotlib.patheffects import AbstractPathEffect
from .._phasorpy import _intersect_circle_circle, _intersect_circle_line
from .._utils import (
dilate_coordinates,
parse_kwargs,
phasor_from_polar_scalar,
phasor_to_polar_scalar,
sort_coordinates,
update_kwargs,
)
from ..lifetime import (
phasor_from_lifetime,
phasor_semicircle,
phasor_to_apparent_lifetime,
)
from ..phasor import phasor_to_polar, phasor_transform
GRID_COLOR = '0.5'
GRID_LINESTYLE = ':'
GRID_LINESTYLE_MAJOR = '-'
GRID_LINEWIDTH = 1.0
GRID_LINEWIDTH_MINOR = 0.6
GRID_FILL = False
GRID_ZORDER = 2
class PhasorPlot:
"""Phasor plot.
Create publication quality visualizations of phasor coordinates.
Parameters
----------
allquadrants : bool, optional
Show all quadrants of phasor space.
By default, only the first quadrant with universal semicircle is shown.
ax : matplotlib.axes.Axes, optional
Matplotlib axes used for plotting.
By default, a new subplot axes is created.
frequency : float, optional
Laser pulse or modulation frequency in MHz.
pad : float, optional
Padding around the plot. The default is 0.05.
grid : dict or bool, optional
Display universal semicircle (default) or polar grid (allquadrants).
If False, no grid is displayed.
If a dictionary, it is passed to :py:meth:`PhasorPlot.polar_grid`
or :py:meth:`PhasorPlot.semicircle`.
**kwargs
Additional properties to set on `ax`.
See Also
--------
phasorpy.plot.plot_phasor
:ref:`sphx_glr_tutorials_api_phasorpy_phasorplot.py`
"""
_ax: Axes
"""Matplotlib axes."""
_full: bool
"""Show all quadrants of phasor space."""
_labels: bool
"""Plot has labels attached."""
_semicircle_ticks: CircleTicks | None
"""Last CircleTicks instance created for semicircle."""
_unitcircle_ticks: CircleTicks | None
"""Last CircleTicks instance created for unit circle."""
_frequency: float
"""Laser pulse or modulation frequency in MHz."""
def __init__(
self,
/,
allquadrants: bool | None = None,
ax: Axes | None = None,
*,
frequency: float | None = None,
grid: dict[str, Any] | bool | None = None,
pad: float | None = None,
**kwargs: Any,
) -> None:
# initialize empty phasor plot
self._ax = pyplot.subplots()[1] if ax is None else ax
self._ax.format_coord = ( # type: ignore[method-assign]
self._on_format_coord
)
self._labels = False
if grid is None:
grid_kwargs = {}
grid = True
if isinstance(grid, dict):
grid_kwargs = grid
grid = True
else:
grid_kwargs = {}
grid = bool(grid)
self._semicircle_ticks = None
self._unitcircle_ticks = None
self._full = bool(allquadrants)
if self._full:
pad = 0.1 if pad is None else float(abs(pad))
xlim = (-1.0 - pad, 1.0 + pad)
ylim = (-1.0 - pad, 1.0 + pad)
xticks: tuple[float, ...] = (-1.0, -0.5, 0.0, 0.5, 1.0)
yticks: tuple[float, ...] = (-1.0, -0.5, 0.0, 0.5, 1.0)
if grid:
self.polar_grid(**grid_kwargs)
else:
pad = 0.05 if pad is None else float(abs(pad))
xlim = (-pad, 1.0 + pad)
ylim = (-pad, 0.65 + pad)
xticks = (0.0, 0.2, 0.4, 0.6, 0.8, 1.0)
yticks = (0.0, 0.2, 0.4, 0.6)
if grid:
self.semicircle(frequency=frequency, **grid_kwargs)
title = 'Phasor plot'
if frequency is not None:
self._frequency = float(frequency)
title += f' ({frequency:g} MHz)'
else:
self._frequency = 0.0
update_kwargs(
kwargs,
title=title,
xlabel='G, real',
ylabel='S, imag',
xlim=xlim,
ylim=ylim,
xticks=xticks,
yticks=yticks,
aspect='equal',
)
for key in ('xlim', 'ylim', 'xticks', 'yticks', 'title'):
if kwargs[key] is None:
del kwargs[key]
self._ax.set(**kwargs)
# set axis limits after ticks
if 'xlim' in kwargs:
self._ax.set_xlim(kwargs['xlim'])
if 'ylim' in kwargs:
self._ax.set_ylim(kwargs['ylim'])
@property
def ax(self) -> Axes:
"""Matplotlib :py:class:`matplotlib.axes.Axes`."""
return self._ax
@property
def fig(self) -> Figure | None:
"""Matplotlib :py:class:`matplotlib.figure.Figure`."""
try:
# matplotlib >= 3.10.0
return self._ax.get_figure(root=True)
except TypeError:
return self._ax.get_figure() # type: ignore[return-value]
@property
def dataunit_to_point(self) -> float:
"""Factor to convert data to point unit."""
fig = self.fig
assert fig is not None
length = fig.bbox_inches.height * self._ax.get_position().height * 72.0
vrange: float = numpy.diff(self._ax.get_ylim()).item()
return length / vrange
[docs]
def show(self) -> None:
"""Display all open figures. Call :py:func:`matplotlib.pyplot.show`."""
if self._labels:
self._ax.legend()
# self.fig.show()
pyplot.show()
[docs]
def legend(self, **kwargs: Any) -> Legend:
"""Add legend to plot.
Parameters
----------
**kwargs
Keyword arguments passed to :py:func:`matplotlib.axes.Axes.legend`.
"""
return self._ax.legend(**kwargs)
[docs]
def save(
self,
file: str | os.PathLike[Any] | IO[bytes] | None,
/,
**kwargs: Any,
) -> None:
"""Save current figure to file.
Parameters
----------
file : str, path-like, or binary file-like
Path or Python file-like object to write the current figure to.
**kwargs
Additional keyword arguments passed to
:py:func:`matplotlib:pyplot.savefig`.
"""
pyplot.savefig(file, **kwargs)
[docs]
def plot(
self,
real: ArrayLike,
imag: ArrayLike,
/,
fmt: str = 'o',
*,
label: Sequence[str] | None = None,
**kwargs: Any,
) -> list[Line2D]:
"""Plot imaginary versus real coordinates as markers or lines.
Parameters
----------
real : array_like
Real component of phasor coordinates.
Must be one or two dimensional.
imag : array_like
Imaginary component of phasor coordinates.
Must be of same shape as `real`.
fmt : str, optional, default: 'o'
Matplotlib style format string.
label : sequence of str, optional
Plot label.
May be a sequence if phasor coordinates are two dimensional arrays.
**kwargs
Additional parameters passed to
:py:meth:`matplotlib.axes.Axes.plot`.
Returns
-------
list[matplotlib.lines.Line2D]
Lines representing data plotted last.
"""
lines = []
if fmt == 'o':
if 'marker' in kwargs:
fmt = ''
if 'linestyle' not in kwargs and 'ls' not in kwargs:
kwargs['linestyle'] = ''
args = (fmt,) if fmt else ()
ax = self._ax
if label is not None and (
isinstance(label, str) or not isinstance(label, Sequence)
):
label = (label,)
for (
i,
(re, im),
) in enumerate(
zip(
numpy.atleast_2d(numpy.asarray(real)),
numpy.atleast_2d(numpy.asarray(imag)),
)
):
lbl = None
if label is not None:
try:
lbl = label[i]
if lbl is not None:
self._labels = True
except IndexError:
pass
lines = ax.plot(re, im, *args, label=lbl, **kwargs)
return lines
def _histogram2d(
self,
real: ArrayLike,
imag: ArrayLike,
/,
**kwargs: Any,
) -> tuple[NDArray[Any], NDArray[Any], NDArray[Any]]:
"""Return two-dimensional histogram of imag versus real coordinates."""
update_kwargs(kwargs, range=(self._ax.get_xlim(), self._ax.get_ylim()))
(xmin, xmax), (ymin, ymax) = kwargs['range']
assert xmax > xmin and ymax > ymin
bins = kwargs.get('bins', 128)
if isinstance(bins, int):
assert bins > 0
aspect = (xmax - xmin) / (ymax - ymin)
if aspect > 1:
bins = (bins, max(int(bins / aspect), 1))
else:
bins = (max(int(bins * aspect), 1), bins)
kwargs['bins'] = bins
return numpy.histogram2d(
numpy.asanyarray(real).reshape(-1),
numpy.asanyarray(imag).reshape(-1),
**kwargs,
)
[docs]
def hist2d(
self,
real: ArrayLike,
imag: ArrayLike,
/,
**kwargs: Any,
) -> None:
"""Plot two-dimensional histogram of imag versus real coordinates.
Parameters
----------
real : array_like
Real component of phasor coordinates.
imag : array_like
Imaginary component of phasor coordinates.
Must be of same shape as `real`.
**kwargs
Additional parameters passed to :py:meth:`numpy.histogram2d`
and :py:meth:`matplotlib.axes.Axes.pcolormesh`.
"""
kwargs_hist2d = parse_kwargs(
kwargs, 'bins', 'range', 'density', 'weights'
)
h, xedges, yedges = self._histogram2d(real, imag, **kwargs_hist2d)
update_kwargs(kwargs, cmap='Blues', norm='log')
cmin = kwargs.pop('cmin', 1)
cmax = kwargs.pop('cmax', None)
if cmin is not None:
h[h < cmin] = None
if cmax is not None:
h[h > cmax] = None
self._ax.pcolormesh(xedges, yedges, h.T, **kwargs)
# TODO: create custom labels for pcolormesh?
# if 'label' in kwargs:
# self._labels = True
[docs]
def contour(
self,
real: ArrayLike,
imag: ArrayLike,
/,
**kwargs: Any,
) -> None:
"""Plot contours of imag versus real coordinates (not implemented).
Parameters
----------
real : array_like
Real component of phasor coordinates.
imag : array_like
Imaginary component of phasor coordinates.
Must be of same shape as `real`.
**kwargs
Additional parameters passed to :py:func:`numpy.histogram2d`
and :py:meth:`matplotlib.axes.Axes.contour`.
"""
if 'cmap' not in kwargs and 'colors' not in kwargs:
kwargs['cmap'] = 'Blues'
update_kwargs(kwargs, norm='log')
kwargs_hist2d = parse_kwargs(
kwargs, 'bins', 'range', 'density', 'weights'
)
h, xedges, yedges = self._histogram2d(real, imag, **kwargs_hist2d)
xedges = xedges[:-1] + ((xedges[1] - xedges[0]) / 2.0)
yedges = yedges[:-1] + ((yedges[1] - yedges[0]) / 2.0)
self._ax.contour(xedges, yedges, h.T, **kwargs)
# TODO: create custom labels for contour?
# if 'label' in kwargs:
# self._labels = True
[docs]
def imshow(
self,
image: ArrayLike,
/,
**kwargs: Any,
) -> None:
"""Plot an image, for example, a 2D histogram (not implemented).
This method is not yet implemented and raises NotImplementedError.
Parameters
----------
image : array_like
Image to display.
**kwargs
Additional parameters passed to
:py:meth:`matplotlib.axes.Axes.imshow`.
"""
raise NotImplementedError
[docs]
def components(
self,
real: ArrayLike,
imag: ArrayLike,
/,
fraction: ArrayLike | None = None,
labels: Sequence[str] | None = None,
label_offset: float | None = None,
**kwargs: Any,
) -> None:
"""Plot linear combinations of phasor coordinates or ranges thereof.
Parameters
----------
real : (N,) array_like
Real component of phasor coordinates.
imag : (N,) array_like
Imaginary component of phasor coordinates.
fraction : (N,) array_like, optional
Weight associated with each component.
If None (default), outline the polygon area of possible linear
combinations of components.
Else, draw lines from the component coordinates to the weighted
average.
labels : Sequence of str, optional
Text label for each component.
label_offset : float, optional
Distance of text label to component coordinate.
**kwargs
Additional parameters passed to
:py:class:`matplotlib.patches.Polygon`,
:py:class:`matplotlib.lines.Line2D`, or
:py:class:`matplotlib.axes.Axes.annotate`
"""
# TODO: use convex hull for outline
# TODO: improve automatic placement of labels
# TODO: catch more annotate properties?
real, imag, indices = sort_coordinates(real, imag)
label_ = kwargs.pop('label', None)
marker = kwargs.pop('marker', None)
color = kwargs.pop('color', None)
fontsize = kwargs.pop('fontsize', 12)
fontweight = kwargs.pop('fontweight', 'bold')
horizontalalignment = kwargs.pop('horizontalalignment', 'center')
verticalalignment = kwargs.pop('verticalalignment', 'center')
if label_offset is None:
label_offset = numpy.diff(self._ax.get_xlim()).item() * 0.04
if labels is not None:
if len(labels) != real.size:
raise ValueError(
f'number labels={len(labels)} != components={real.size}'
)
labels = [labels[i] for i in indices]
textposition = dilate_coordinates(real, imag, label_offset)
for label, re, im, x, y in zip(labels, real, imag, *textposition):
if not label:
continue
self._ax.annotate(
label,
(re, im),
xytext=(x, y),
color=color,
fontsize=fontsize,
fontweight=fontweight,
horizontalalignment=horizontalalignment,
verticalalignment=verticalalignment,
)
if fraction is None:
linestyle = kwargs.pop('ls', GRID_LINESTYLE)
linewidth = kwargs.pop('lw', GRID_LINEWIDTH)
update_kwargs(
kwargs,
edgecolor=GRID_COLOR if color is None else color,
linestyle=linestyle,
linewidth=linewidth,
fill=GRID_FILL,
)
self._ax.add_patch(Polygon(numpy.vstack([real, imag]).T, **kwargs))
if marker is not None:
self._ax.plot(
real,
imag,
marker=marker,
linestyle='',
color=color,
label=label_,
)
if label_ is not None:
self._labels = True
return
fraction = numpy.asarray(fraction)[indices]
linestyle = kwargs.pop('ls', GRID_LINESTYLE)
linewidth = kwargs.pop('lw', GRID_LINEWIDTH)
update_kwargs(
kwargs,
color=GRID_COLOR if color is None else color,
linestyle=linestyle,
linewidth=linewidth,
)
center_re, center_im = numpy.average(
numpy.vstack([real, imag]), axis=-1, weights=fraction
)
for re, im in zip(real, imag):
self._ax.add_line(
Line2D([center_re, re], [center_im, im], **kwargs)
)
if marker is not None:
self._ax.plot(real, imag, marker=marker, linestyle='', color=color)
self._ax.plot(
center_re,
center_im,
marker=marker,
linestyle='',
color=color,
label=label_,
)
if label_ is not None:
self._labels = True
[docs]
def line(
self,
real: ArrayLike,
imag: ArrayLike,
/,
**kwargs: Any,
) -> list[Line2D]:
"""Draw grid line.
Parameters
----------
real : array_like, shape (n, )
Real components of line start and end coordinates.
imag : array_like, shape (n, )
Imaginary components of line start and end coordinates.
**kwargs
Additional parameters passed to
:py:class:`matplotlib.lines.Line2D`.
Returns
-------
list[matplotlib.lines.Line2D]
List containing plotted line.
"""
linestyle = kwargs.pop('ls', GRID_LINESTYLE)
linewidth = kwargs.pop('lw', GRID_LINEWIDTH)
update_kwargs(
kwargs, color=GRID_COLOR, linestyle=linestyle, linewidth=linewidth
)
return [self._ax.add_line(Line2D(real, imag, **kwargs))]
[docs]
def circle(
self,
real: float,
imag: float,
/,
radius: float,
**kwargs: Any,
) -> None:
"""Draw grid circle of radius around center.
Parameters
----------
real : float
Real component of circle center coordinate.
imag : float
Imaginary component of circle center coordinate.
radius : float
Circle radius.
**kwargs
Additional parameters passed to
:py:class:`matplotlib.patches.Circle`.
"""
linestyle = kwargs.pop('ls', GRID_LINESTYLE)
linewidth = kwargs.pop('lw', GRID_LINEWIDTH)
update_kwargs(
kwargs,
color=GRID_COLOR,
linestyle=linestyle,
linewidth=linewidth,
fill=GRID_FILL,
)
self._ax.add_patch(Circle((real, imag), radius, **kwargs))
[docs]
def arrow(
self,
point0: ArrayLike,
point1: ArrayLike,
/,
*,
angle: float | None = None,
**kwargs: Any,
) -> None:
"""Draw arrow between points.
By default, draw a straight arrow with a ``'-|>'`` style, a mutation
scale of 20, and a miter join style.
Parameters
----------
point0 : array_like
X and y coordinates of start point of arrow.
point1 : array_like
X and y coordinates of end point of arrow.
angle : float, optional
Angle in radians, controlling curvature of line between points.
If None (default), draw a straight line.
**kwargs
Additional parameters passed to
:py:class:`matplotlib.patches.FancyArrowPatch`.
"""
arrowstyle = kwargs.pop('arrowstyle', '-|>')
mutation_scale = kwargs.pop('mutation_scale', 20)
joinstyle = kwargs.pop('joinstyle', 'miter')
if angle is not None:
kwargs['connectionstyle'] = f'arc3,rad={math.tan(angle / 4.0)}'
patch = FancyArrowPatch(
point0, # type: ignore[arg-type]
point1, # type: ignore[arg-type]
arrowstyle=arrowstyle,
mutation_scale=mutation_scale,
# capstyle='projecting',
joinstyle=joinstyle,
**kwargs,
)
self._ax.add_patch(patch)
[docs]
def cursor(
self,
real: ArrayLike,
imag: ArrayLike,
real_limit: ArrayLike | None = None,
imag_limit: ArrayLike | None = None,
/,
*,
radius: ArrayLike | None = None,
radius_minor: ArrayLike | None = None,
angle: ArrayLike | Literal['phase', 'semicircle'] | str | None = None,
color: ArrayLike | None = None,
label: ArrayLike | None = None,
crosshair: bool = False,
polar: bool = False,
**kwargs: Any,
) -> None:
"""Draw cursor(s) at phasor coordinates.
Parameters
----------
real : array_like
Real component of phasor coordinate.
imag : array_like
Imaginary component of phasor coordinate.
real_limit : array_like, optional
Real component of limiting phasor coordinate.
imag_limit : array_like, optional
Imaginary component of limiting phasor coordinate.
radius : array_like, optional
Radius of circular cursor.
radius_minor : array_like, optional
Radius of elliptic cursor along semi-minor axis.
By default, `radius_minor` is equal to `radius`, that is,
the ellipse is circular.
angle : array_like or {'phase', 'semicircle'}, optional
Rotation angle of semi-major axis of elliptic cursor in radians.
If None or 'phase', align the minor axis of the ellipse with
the closest tangent on the unit circle.
If 'semicircle', align the ellipse with the universal semicircle.
color : array_like, optional
Color of cursor.
label : array_like, optional
String label for cursor.
crosshair : bool, optional
If true, draw polar or Cartesian lines or arcs limited by radius.
Else, draw circle or ellipse (default).
Only applies if `radius` is provided.
polar : bool, optional
If true, draw phase line and modulation arc.
Else, draw Cartesian lines.
**kwargs
Additional parameters passed to
:py:class:`matplotlib.lines.Line2D`,
:py:class:`matplotlib.patches.Circle`,
:py:class:`matplotlib.patches.Ellipse`, or
:py:class:`matplotlib.patches.Arc`.
See Also
--------
phasorpy.plot.PhasorPlot.polar_cursor
"""
if real_limit is not None and imag_limit is not None:
return self.polar_cursor(
*phasor_to_polar(real, imag),
*phasor_to_polar(real_limit, imag_limit),
radius=radius,
radius_minor=radius_minor,
angle=angle,
color=color,
label=label,
crosshair=crosshair,
polar=polar,
**kwargs,
)
return self.polar_cursor(
*phasor_to_polar(real, imag),
radius=radius,
radius_minor=radius_minor,
angle=angle,
color=color,
label=label,
crosshair=crosshair,
polar=polar,
**kwargs,
)
[docs]
def polar_cursor(
self,
phase: ArrayLike | None = None,
modulation: ArrayLike | None = None,
phase_limit: ArrayLike | None = None,
modulation_limit: ArrayLike | None = None,
*,
radius: ArrayLike | None = None,
radius_minor: ArrayLike | None = None,
angle: ArrayLike | Literal['phase', 'semicircle'] | str | None = None,
color: ArrayLike | None = None,
label: ArrayLike | None = None,
crosshair: bool = False,
polar: bool = True,
**kwargs: Any,
) -> None:
"""Draw cursor(s) at polar coordinates.
Parameters
----------
phase : array_like, optional
Angular component of polar coordinate in radians.
modulation : array_like, optional
Radial component of polar coordinate.
phase_limit : array_like, optional
Angular component of limiting polar coordinate (in radians).
Modulation arcs are drawn between `phase` and `phase_limit`
if `polar` is true.
modulation_limit : array_like, optional
Radial component of limiting polar coordinate.
Phase lines are drawn from `modulation` to `modulation_limit`
if `polar` is true.
radius : array_like, optional
Radius of circular cursor.
radius_minor : array_like, optional
Radius of elliptic cursor along semi-minor axis.
By default, `radius_minor` is equal to `radius`, that is,
the ellipse is circular.
angle : array_like or {'phase', 'semicircle'}, optional
Rotation angle of semi-major axis of elliptic cursor in radians.
If None or 'phase', align the minor axis of the ellipse with
the closest tangent on the unit circle.
If 'semicircle', align the ellipse with the universal semicircle.
color : array_like, optional
Color of cursor.
label : array_like, optional
String label for cursor.
crosshair : bool, optional
If true, draw polar or Cartesian lines or arcs limited by radius.
Else, draw circle or ellipse (default).
Only applies if `radius` is provided.
polar : bool, optional
If true, draw phase line and modulation arc.
Else, draw Cartesian lines.
**kwargs
Additional parameters passed to
:py:class:`matplotlib.lines.Line2D`,
:py:class:`matplotlib.patches.Circle`,
:py:class:`matplotlib.patches.Ellipse`, or
:py:class:`matplotlib.patches.Arc`.
See Also
--------
phasorpy.plot.PhasorPlot.cursor
"""
shape = None
if phase is not None:
phase = numpy.atleast_1d(phase)
if phase.ndim != 1:
raise ValueError(f'invalid {phase.ndim=} != 1')
shape = phase.shape
if modulation is not None:
if shape is not None:
modulation = numpy.broadcast_to(modulation, shape)
else:
modulation = numpy.atleast_1d(modulation)
if modulation.ndim != 1:
raise ValueError(f'invalid {modulation.ndim=} != 1')
shape = modulation.shape
if shape is None:
return
if phase_limit is not None:
phase_limit = numpy.broadcast_to(phase_limit, shape)
if modulation_limit is not None:
modulation_limit = numpy.broadcast_to(modulation_limit, shape)
if radius is not None:
radius = numpy.broadcast_to(radius, shape)
if radius_minor is not None:
radius_minor = numpy.broadcast_to(radius_minor, shape)
if angle is not None and not isinstance(angle, str):
angle = numpy.broadcast_to(angle, shape)
if label is not None:
label = numpy.broadcast_to(label, shape)
label = [str(c) for c in label]
if color is not None:
color = numpy.atleast_1d(color)
if color.dtype.kind == 'U':
color = numpy.broadcast_to(color, shape)
color = [str(c) for c in color]
else:
color = numpy.broadcast_to(color, (shape[0], color.shape[-1]))
for i in range(shape[0]):
if color is not None:
kwargs['color'] = color[i]
if label is not None:
kwargs['label'] = label[i]
self._cursor(
phase if phase is None else float(phase[i]),
modulation if modulation is None else float(modulation[i]),
phase_limit if phase_limit is None else float(phase_limit[i]),
(
modulation_limit
if modulation_limit is None
else float(modulation_limit[i])
),
radius=radius if radius is None else float(radius[i]),
radius_minor=(
radius_minor
if radius_minor is None
else float(radius_minor[i])
),
angle=(
angle
if (angle is None or isinstance(angle, str))
else float(angle[i])
),
crosshair=crosshair,
polar=polar,
**kwargs,
)
def _cursor(
self,
phase: float | None = None,
modulation: float | None = None,
phase_limit: float | None = None,
modulation_limit: float | None = None,
*,
radius: float | None = None,
radius_minor: float | None = None,
angle: float | Literal['phase', 'semicircle'] | str | None = None,
crosshair: bool = False,
polar: bool = True,
**kwargs: Any,
) -> None:
"""Draw single cursor at polar coordinate."""
linestyle = kwargs.pop('ls', GRID_LINESTYLE_MAJOR)
linewidth = kwargs.pop('lw', GRID_LINEWIDTH)
update_kwargs(
kwargs,
color=GRID_COLOR,
linestyle=linestyle,
linewidth=linewidth,
fill=GRID_FILL,
zorder=GRID_ZORDER,
)
ax = self._ax
if radius is not None and phase is not None and modulation is not None:
x = modulation * math.cos(phase)
y = modulation * math.sin(phase)
if radius_minor is not None and radius_minor != radius:
if angle is None:
angle = phase
elif isinstance(angle, str):
if angle == 'phase':
angle = phase
elif angle == 'semicircle':
angle = math.atan2(y, x - 0.5)
else:
raise ValueError(f'invalid {angle=}')
angle = math.degrees(angle)
if not crosshair:
# draw elliptical cursor
ax.add_patch(
Ellipse(
(x, y),
radius * 2,
radius_minor * 2,
angle=angle,
**kwargs,
)
)
if 'label' in kwargs:
self._labels = True
return None
# TODO: implement crosshair intersecting with ellipse?
raise ValueError('crosshair not implemented with ellipse')
if not crosshair:
# draw circlar cursor
ax.add_patch(Circle((x, y), radius, **kwargs))
if 'label' in kwargs:
self._labels = True
return None
del kwargs['fill']
if not polar:
# draw Cartesian crosshair lines limited by radius
x0, y0, x1, y1 = _intersect_circle_line(
x, y, radius, x, y, x + 1, y
)
ax.add_line(Line2D([x0, x1], [y0, y1], **kwargs))
if 'label' in kwargs:
self._labels = True
del kwargs['label']
x0, y0, x1, y1 = _intersect_circle_line(
x, y, radius, x, y, x, y + 1
)
ax.add_line(Line2D([x0, x1], [y0, y1], **kwargs))
return None
if abs(x) < 1e-6 and abs(y) < 1e-6:
# phase and modulation not defined at origin
return None
# draw crosshair phase line and modulation arc limited by circle
x0, y0, x1, y1 = _intersect_circle_line(x, y, radius, 0, 0, x, y)
ax.add_line(Line2D([x0, x1], [y0, y1], **kwargs))
if 'label' in kwargs:
self._labels = True
del kwargs['label']
x0, y0, x1, y1 = _intersect_circle_circle(
0, 0, modulation, x, y, radius
)
ax.add_patch(
Arc(
(0, 0),
modulation * 2,
modulation * 2,
theta1=math.degrees(math.atan2(y0, x0)),
theta2=math.degrees(math.atan2(y1, x1)),
fill=False,
**kwargs,
)
)
return None
if not polar:
if phase is None or modulation is None:
return None
x0 = modulation * math.cos(phase)
y0 = modulation * math.sin(phase)
if phase_limit is None or modulation_limit is None:
# draw Cartesian crosshair lines
del kwargs['fill']
ax.add_line(Line2D([x0, x0], [-2, 2], **kwargs))
if 'label' in kwargs:
self._labels = True
del kwargs['label']
ax.add_line(Line2D([-2, 2], [y0, y0], **kwargs))
else:
# draw rectangle
x1 = modulation_limit * math.cos(phase_limit)
y1 = modulation_limit * math.sin(phase_limit)
ax.add_patch(Rectangle((x0, y0), x1 - x0, y1 - y0, **kwargs))
if 'label' in kwargs:
self._labels = True
return None
# TODO: implement filled polar region/rectangle
del kwargs['fill']
for phi in (phase, phase_limit):
if phi is not None:
if modulation is not None and modulation_limit is not None:
x0 = modulation * math.cos(phi)
y0 = modulation * math.sin(phi)
x1 = modulation_limit * math.cos(phi)
y1 = modulation_limit * math.sin(phi)
else:
x0 = 0
y0 = 0
x1 = math.cos(phi) * 2
y1 = math.sin(phi) * 2
ax.add_line(Line2D([x0, x1], [y0, y1], **kwargs))
if 'label' in kwargs:
self._labels = True
del kwargs['label']
for mod in (modulation, modulation_limit):
if mod is not None:
if phase is not None and phase_limit is not None:
theta1 = math.degrees(min(phase, phase_limit))
theta2 = math.degrees(max(phase, phase_limit))
else:
theta1 = 0.0
theta2 = 360.0 # if self._full else 90.0
# TODO: filling arc objects is not supported
ax.add_patch(
Arc(
(0, 0),
mod * 2,
mod * 2,
theta1=theta1,
theta2=theta2,
fill=False,
**kwargs,
)
)
if 'label' in kwargs:
self._labels = True
del kwargs['label']
return None
[docs]
def polar_grid(
self,
radii: int | Sequence[float] | None = None,
angles: int | Sequence[float] | None = None,
samples: int | None = None,
labels: Sequence[str] | None = None,
ticks: ArrayLike | None = None,
tick_space: ArrayLike | None = None,
tick_format: str | None = None,
**kwargs: Any,
) -> None:
r"""Draw polar coordinate system.
Parameters
----------
radii : int or sequence of float, optional
Position of radial gridlines in range (0, 1].
If an integer, the number of equidistant radial gridlines.
By default, three equidistant radial gridlines are drawn.
The unit circle (radius 1), if included, is drawn in major style.
angles : int or sequence of float, optional
Position of angular gridlines in range [0, 2 pi].
If an integer, the number of equidistant angular gridlines.
By default, 12 equidistant angular gridlines are drawn.
samples : int, optional
Number of vertices of polygon inscribed in unit circle.
By default, no inscribed polygon is drawn.
labels : sequence of str, optional
Tick labels on unit circle.
Labels are placed at equidistant angles if `ticks` are not
provided.
ticks : array_like, optional
Values at which to place tick labels on unit circle.
If `labels` are not provided, `ticks` values formatted with
`tick_format` are used as labels.
If `tick_space` is not provided, tick values are angles in radians.
tick_space : array_like, optional
Values used to convert `ticks` to angles.
For example, the wavelengths used to calculate spectral phasors
or the minimum and maximum wavelengths of a sine-cosine filter.
tick_format : str, optional
Format string for tick values if `labels` is None.
By default, the tick format is "{}".
**kwargs
Parameters passed to
:py:class:`matplotlib.patches.Circle` and
:py:class:`matplotlib.lines.Line2D`.
Raises
------
ValueError
If number of ticks doesn't match number of labels.
If `tick_space` has less than two values.
Notes
-----
Use ``radii=1, angles=4`` to draw major gridlines only.
The values of ticks (:math:`v`) are converted to angles
(:math:`\theta`) using `tick_space` (:math:`s`) according to:
.. math::
\theta = \frac{v - s_0}{s_{-1} + s_1 - 2 s_0} \cdot 2 \pi
"""
ax = self._ax
minor_kwargs = kwargs.copy()
linestyle = minor_kwargs.pop('ls', GRID_LINESTYLE)
linewidth = minor_kwargs.pop('lw', GRID_LINEWIDTH_MINOR)
update_kwargs(
minor_kwargs,
color=GRID_COLOR,
linestyle=linestyle,
linewidth=linewidth,
zorder=GRID_ZORDER,
)
linestyle = kwargs.pop('ls', GRID_LINESTYLE_MAJOR)
linewidth = kwargs.pop('lw', GRID_LINEWIDTH)
update_kwargs(
kwargs,
color=GRID_COLOR,
linestyle=linestyle,
linewidth=linewidth,
zorder=GRID_ZORDER,
# fill=GRID_FILL,
)
if samples is not None and samples > 1:
angle = numpy.linspace(0, 2 * math.pi, samples, endpoint=False)
xy = numpy.vstack([numpy.cos(angle), numpy.sin(angle)]).T
ax.add_patch(Polygon(xy, fill=False, **kwargs))
if radii is None:
radii = [1 / 3, 2 / 3, 1.0]
elif isinstance(radii, int):
radii = numpy.linspace(0, 1, radii + 1, endpoint=True)[1:].tolist()
for r in radii: # type: ignore[union-attr]
if r < 1e-3:
# skip zero radius
continue
if abs(r - 1.0) < 1e-3:
# unit circle
circle = Circle((0, 0), 1, fill=False, **kwargs)
elif r > 1.0:
continue
else:
# minor circle
circle = Circle((0, 0), r, fill=False, **minor_kwargs)
ax.add_patch(circle)
if angles is None:
angles = 12
if isinstance(angles, int):
angles = numpy.linspace(
0, 2 * math.pi, angles, endpoint=False
).tolist()
for a in angles: # type: ignore[union-attr]
if a < 0 or a > 2 * math.pi:
# skip angles out of range
continue
x = math.cos(a)
y = math.sin(a)
ax.add_line(Line2D([0.0, x], [0.0, y], **minor_kwargs))
if labels is None and ticks is None:
# no labels
return
if ticks is None:
# equidistant labels
assert labels is not None
ticks = numpy.linspace(0, 2 * math.pi, len(labels), endpoint=False)
tick_space = None
elif labels is None:
# use tick values as labels
assert ticks is not None
ticks = numpy.array(ticks, copy=True, ndmin=1)
if tick_format is None:
tick_format = '{}'
labels = [tick_format.format(t) for t in ticks]
ticks = ticks.astype(numpy.float64)
else:
# ticks and labels
ticks = numpy.array(ticks, dtype=numpy.float64, copy=True, ndmin=1)
if ticks.size != len(labels):
raise ValueError(f'{ticks.size=} != {len(labels)=}')
if tick_space is not None:
tick_space = numpy.asarray(tick_space, dtype=numpy.float64)
if tick_space.ndim != 1 or tick_space.size < 2:
raise ValueError(
f'invalid {tick_space.ndim=} or {tick_space.size=} < 2'
)
assert isinstance(ticks, numpy.ndarray) # for mypy
ticks -= tick_space[0]
ticks /= tick_space[-1] + tick_space[1] - 2 * tick_space[0]
ticks *= 2 * math.pi
real = numpy.cos(ticks)
imag = numpy.sin(ticks)
self._unitcircle_ticks = CircleTicks(labels=labels)
ax.plot(real, imag, path_effects=[self._unitcircle_ticks], **kwargs)
[docs]
def semicircle(
self,
frequency: float | None = None,
*,
polar_reference: tuple[float, float] | None = None,
phasor_reference: tuple[float, float] | None = None,
lifetime: Sequence[float] | None = None,
labels: Sequence[str] | None = None,
show_circle: bool = True,
use_lines: bool = False,
**kwargs: Any,
) -> list[Line2D]:
"""Draw universal semicircle.
Parameters
----------
frequency : float, optional
Laser pulse or modulation frequency in MHz.
polar_reference : (float, float), optional, default: (0, 1)
Polar coordinates of zero lifetime.
phasor_reference : (float, float), optional, default: (1, 0)
Phasor coordinates of zero lifetime.
Alternative to `polar_reference`.
lifetime : sequence of float, optional
Single component lifetimes at which to draw ticks and labels.
Only applies when `frequency` is specified.
labels : sequence of str, optional
Tick labels. By default, the values of `lifetime`.
Only applies when `frequency` and `lifetime` are specified.
show_circle : bool, optional, default: True
Draw universal semicircle.
use_lines : bool, optional, default: False
Draw universal semicircle using lines instead of arc.
**kwargs
Additional parameters passed to
:py:class:`matplotlib.lines.Line2D` or
:py:class:`matplotlib.patches.Arc` and
:py:meth:`matplotlib.axes.Axes.plot`.
Returns
-------
list of matplotlib.lines.Line2D
Lines representing plotted semicircle and ticks.
"""
if frequency is not None:
self._frequency = float(frequency)
linestyle = kwargs.pop('ls', GRID_LINESTYLE_MAJOR)
linewidth = kwargs.pop('lw', GRID_LINEWIDTH)
update_kwargs(
kwargs,
linestyle=linestyle,
linewidth=linewidth,
color=GRID_COLOR,
zorder=GRID_ZORDER,
)
if 'label' in kwargs:
self._labels = True
if phasor_reference is not None:
polar_reference = phasor_to_polar_scalar(*phasor_reference)
if polar_reference is None:
polar_reference = (0.0, 1.0)
if phasor_reference is None:
phasor_reference = phasor_from_polar_scalar(*polar_reference)
ax = self._ax
lines = []
if show_circle:
if use_lines:
lines = [
ax.add_line(
Line2D(
*phasor_transform(
*phasor_semicircle(), *polar_reference
),
**kwargs,
)
)
]
else:
ax.add_patch(
Arc(
(phasor_reference[0] / 2, phasor_reference[1] / 2),
polar_reference[1],
polar_reference[1],
theta1=math.degrees(polar_reference[0]),
theta2=math.degrees(polar_reference[0]) + 180.0,
fill=False,
**kwargs,
)
)
kwargs.pop('label', None) # don't pass label to ticks
kwargs.pop('capstyle', None)
if frequency is not None and polar_reference == (0.0, 1.0):
# draw ticks and labels
lifetime, labels = _semicircle_ticks(frequency, lifetime, labels)
self._semicircle_ticks = CircleTicks((0.5, 0.0), labels=labels)
lines.extend(
ax.plot(
*phasor_transform(
*phasor_from_lifetime(frequency, lifetime),
*polar_reference,
),
path_effects=[self._semicircle_ticks],
**kwargs,
)
)
return lines
def _on_format_coord(self, x: float, y: float) -> str:
"""Callback function to update coordinates displayed in toolbar."""
phi, mod = phasor_to_polar_scalar(x, y)
ret = [
f'[{x:4.2f}, {y:4.2f}]',
f'[{math.degrees(phi):.0f}°, {mod * 100:.0f}%]',
]
if x > 0.0 and y > 0.0 and self._frequency > 0.0:
tp, tm = phasor_to_apparent_lifetime(x, y, self._frequency)
ret.append(f'[{tp:.2f}, {tm:.2f} ns]')
return ' '.join(reversed(ret))
class CircleTicks(AbstractPathEffect):
"""Draw ticks on unit circle or universal semicircle.
Parameters
----------
origin : (float, float), optional
Origin of circle.
size : float, optional
Length of tick in dots.
The default is ``rcParams['xtick.major.size']``.
labels : sequence of str, optional
Tick labels for each vertex in path.
**kwargs
Extra keywords passed to matplotlib's
:py:meth:`matplotlib.patheffects.AbstractPathEffect._update_gc`.
"""
_origin: tuple[float, float] # origin of circle
_size: float # tick length
_labels: tuple[str, ...] # tick labels
_gc: dict[str, Any] # keywords passed to _update_gc
def __init__(
self,
origin: tuple[float, float] | None = None,
/,
size: float | None = None,
labels: Sequence[str] | None = None,
**kwargs: Any,
) -> None:
super().__init__((0.0, 0.0))
if origin is None:
self._origin = 0.0, 0.0
else:
self._origin = float(origin[0]), float(origin[1])
if size is None:
self._size = pyplot.rcParams['xtick.major.size']
else:
self._size = size
if labels is None or len(labels) == 0:
self._labels = ()
else:
self._labels = tuple(labels)
self._gc = kwargs
@property
def labels(self) -> tuple[str, ...]:
"""Tick labels."""
return self._labels
@labels.setter
def labels(self, value: Sequence[str] | None, /) -> None:
if value is None:
self._labels = ()
else:
self._labels = tuple(value)
def draw_path(
self,
renderer: Any,
gc: Any,
tpath: Any,
affine: Any,
rgbFace: Any = None,
) -> None:
"""Draw path with updated gc."""
gc0 = renderer.new_gc()
gc0.copy_properties(gc)
# TODO: this uses private methods of the base class
gc0 = self._update_gc(gc0, self._gc) # type: ignore[attr-defined]
trans = affine
trans += self._offset_transform(renderer) # type: ignore[attr-defined]
font = FontProperties()
# approximate half size of 'x'
fontsize = renderer.points_to_pixels(font.get_size_in_points()) / 4
size = renderer.points_to_pixels(self._size)
origin = affine.transform((self._origin,))
transpath = affine.transform_path(tpath)
polys = transpath.to_polygons(closed_only=False)
for p in polys:
# coordinates of tick ends
t = p - origin
t /= numpy.hypot(t[:, 0], t[:, 1])[:, numpy.newaxis]
d = t.copy()
t *= size
t += p
xyt = numpy.empty((2 * p.shape[0], 2))
xyt[0::2] = p
xyt[1::2] = t
renderer.draw_path(
gc0,
Path(xyt, numpy.tile([Path.MOVETO, Path.LINETO], p.shape[0])),
affine.inverted() + trans,
rgbFace,
)
if not self._labels:
continue
# coordinates of labels
t = d * size * 2.5
t += p
if renderer.flipy():
h = renderer.get_canvas_width_height()[1]
else:
h = 0.0
for s, (x, y), (dx, _) in zip(self._labels, t, d):
# TODO: get rendered text size from matplotlib.text.Text?
# this did not work:
# Text(d[i,0], h - d[i,1], label, ha='center', va='center')
if not s:
continue
x = x + fontsize * len(s.split()[0]) * (dx - 1.0)
y = h - y + fontsize
renderer.draw_text(gc0, x, y, s, font, 0.0)
gc0.restore()
def _semicircle_ticks(
frequency: float,
lifetime: Sequence[float] | None = None,
labels: Sequence[str] | None = None,
) -> tuple[tuple[float, ...], tuple[str, ...]]:
"""Return semicircle tick lifetimes and labels at frequency."""
if lifetime is None:
lifetime = [0.0] + [
2**t
for t in range(-8, 32)
if phasor_from_lifetime(frequency, 2**t)[1] >= 0.18
]
unit = 'ns'
else:
unit = ''
if labels is None:
labels = [f'{tau:g}' for tau in lifetime]
try:
labels[2] = f'{labels[2]} {unit}'
except IndexError:
pass
return tuple(lifetime), tuple(labels)